
7 -A177 228 N U PROPERTIES OF ORTHOGONAL 
ARRAYS AND THEIR

STATISTICAL APPLICATIONS (U) ILLINOIS UNIV AT CHICAGO
CIRCLE DEPT OF MATHEMATICS STATISTIC .A S HEDAYAT

UNCLASSIFIED OCT 86 TR-86-15 AFOSR-TR-87-866 F/G 2/imEE EE EULiEu S



1~ 1.35

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREtAU Of MOANDARDS 19(l A



00 THE UNIVERSITY OF ILLINOIS
N AT CHICAGO

ACN.~ R.4e

New Properties of Orthogonal Arrays
and Their Statistical Applications

By

A.S. Hedayat*

Approved rfor publo releS I

A 4 -tr4 ' * --- "-A- d

AIR 1OnTE OnI"1V M- SCIEN-I! MZhAWH ( ILISC)

.hts to-hnic3l report h-is be" et'v10 "sId Is

sim-rvoved f or pubic So 010ase 1AM AYR 190-12.
D st _-PutioY*_ is unlimited.

Ch',. TeabV't4 zI Inf.,.ationDIi5
1 OTIC

SDEPARTMENT OF MA~THEMATICSD
c2STATISTICS, AND COMPUTER SCIENCE



I
New Properties of Orthogonal Arrays

and Their Statistical Applications

By

A.S. Hedayat*

Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago
Chicago, Illinois 60680

STATISTICAL LABORATORY TECHNICAL REPORT

No. 86-15, October, 1986

~DTIC

Research is sponsored by Grant AFOSR 85-0320.



REPORT DOCUMENTATION PAGE
is. REPORT SECURITY CL ASSIPICATION 1bi. RESTRICTIVE MARK1INGS

UNCASSIFIED _______________________
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

N/A Approved for public release; Distribution
2b. OEC,.ASSIFICATION/OWN4GRAOING SCHEDULE unlimited.

N/A _____________________
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONI1TORING ORGANIZATION REPORT NUMISER(S)

______________________P_ A OT _8- 0 06 6

6.L NAME OF PERFORMING ORGANIZATION ~b6 OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

University of Illinois at
Chicago ________ AFOSR/NM

&c. ADDR4ESS (City. Stote and ZIP Code) 7b. ADDRESS (City. State mW ZIP Code)

P.O. Box 4348 Bldg. 410
Chicago, IL 60680 Bolling Air Force Base, D.C. 20332-6448

so. NAME Ogg FUNOING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

AFOSR NM AFOSR 85-0320
at. ADDRESS (Clty. Sale and ZIP code) 10. SOURCE OF FUNDING NOS. ____________

Bldg. 410 PROGRAM PROJECT TAS WORK UNIT

Boiling Air Force Base, D.C. 20332-6448 ELE ME NT NO. NO. NO NO.

12. PERSONAL AUTMORIS)

13o. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT tV,.. Mo.. Day) 15. PAGE COUNT

Luai -IFROM ____ TO_ 10___

1B. SUPPLEMENTARY NO0TATION

17 COSATI CODES It. SUBJECT TERMS (Conbanue on ivuei if neceloory aind identify by block numbirr,

xIE..: GROUP SUB. GR. Orthogonal arrays; fractional factorials; flexible
orthogonal arrays; line graphs.

19. AUTRACT (Consinue on rvrrge if necessry and identify by block number,

It is shown that an orthogonal array of strength t is more than a fractional array de-
sign of resolution t + 1. The practical usefulness of this result is shown. The notion
of flexible orthogonal arrays of strength t is introduced and its practical usefulness is
demonstrated. An efficient way of generating the design and information matrices associ-
ated with orthogonal arrays in the context of orthogonal polynomial models is presented.

20. DiSTRiBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATION

UNtC..ASSIPISD/UN4LIMITEO 9, SAME AS RPT.: OTIC USERS C UNCLASSIFIED

22a. %^ME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
finclude, Area Coder

Major Brian W. Woodruff (202) 767-5027 NM



New Properties of Orthogonal Arrays and Their Statistical Applications

A. HEDAYAT*

ABSTRACT

It is shown that an orthogonal array of strength t is more than a fractional factorial

design of resolution t + 1. The practical usefulness of this result is shown. The notion of

flexible orthogonal arrays of strength t is introduced and its practical usefulness is demon-

strated. An efficient way of generating the design and information matrices associated

with orthogonal arrays in the context of orthogonal polynomial models is presented.
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1. INTRODUCTION

Fractional factorial designs are among the most utilized statistical designs by prac-

tioners. In a series of three papers Rao (1946, 1947, 1949) identified special types of

fractions with a great deal of symmetry and many desirable statistical properties. These

special fractions are now known as orthogonal arrays. Numerous beautiful results have

been obtained by both statisticians and mathematicians on this topic. These results are

published in a wide variety of journals and presented in many different styles. In their

forthcoming research monograph Hedayat and Stufken (1986) have presented the various

results on this fascinating subject in a unified and comprehensive way.

This paper is divided into four sections., Ihr section 2.we will review basic definitions

and terminology of the subject. ,,In section 3-we-will present-an efficient way of preparing

design and information matrices associated with orthogonal arrays under orthogonal poly-

nomial models. Section 4 contains a new result and a new concept. The new result states

that with orthogonal arrays of strength t we can orthogonally estimate other parametric

vectors besides the one which is advocated in the literature. [i also identified some

types of orthogonal arrays which are somewhere between orthogonal arrays of strength t

and t + 1. We-c.lt-em flexible orthogonal arrays of strength t. Practical applications of

such arrays are also pointed out. These results are very useful in preparing line graphs of

Taguchi for orthogonal arrays.

2. PRELIMINARIES

We begin by giving some of the basic definitions and terminology. Let S be a set of

s symbols, coded by 0,1,... ,a - 1. A k x N array A with entries from S is called an

orthogonal array, denoted by OA(N,k,s,t), if each t x N subarray of A has the property

that every possible t x 1 vector with entries from S appears equally often (say A times) in

the columns of the chosen subarray. The integer A is called the index of the array, while

N, k, s and t are said to be the parameters of the array. If A = 1 the array is said to be of

index unity. The relation N = Ast is an immediate consequence of the definition.

The reader may verify that the following array is an OA(8,4,2,3), an orthogonal array

of index unity.
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0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

The terminology that is used in the literature for the parameters of an orthogonal array

is as follows: N is called the size of the array or the number of runs, assemmblies or

treatment combinations; k is called the number of constraints or factors in the arrays; s is

called the number of levels or symbols; t is called the strength of the array.

3. ORTHOGONAL ARRAYS UNDER ORTHOGONAL POLYNOMIAL MODELS

As a fractional factorial designs orthogonal arrays are highly efficient if orthogonal

polynomial models are postulated for the responses under study. It was indeed in this

context that Rao introduced the concept of orthogonal arrays in the literature. The purpose

of this section is two-fold. To present the orthogonal polynomial models associated with

orthogonal arrays so that our result in section 4 will be easily understood by the readers of

this paper. We also present an efficient way, recently discovered by Hedayat and Stufken

(1986), for generating the design and information matrices associated with orthogonal

arrays. This new method is very useful in analyzing data obtained under orthogonal

arrays and in studying the optimality of such arrays.

In the remainder of this section we will have to assume that the reader has some

familiarity with the standard concepts in factorial experiments and the theory of ANOVA.

For a quick review of these concepts a useful reference is Raktoe, Hedayat and Federer

(1981). Assume that our interest is in an experiment based on k controllable factors,

each of which can be set at s different levels. The levels ae coded by0,1..,-.

A treatment combination is an experimental condition to which each factor contributes

a level. For example (i,.,j.. i s a treatment combination with the j'h factor

at level i, . Thus there are sk distinct treatment combinations. These can be exhibited

column wise in a k x s k array, which we will denote by p and refer to as a minimal complete

factorial based on k factors at 8 levels each.

Let g be a treatment combination and y,7 the observed response under the experimental

condition g. We will assume that y. is a random variable,

0111100



Yg f'(9O + Cg,

where f'(g) is a row vector of real known functions of g and 0 is a column vector of

unknown parameters. The random error component eg will be assumed to have mean zero

and unknown variance a2.

The structure of f'(g) is an important consideration in practice. If all factors are

quantitative factors a popular way of modeling y. is to structure f'(g) via the orthogonal

polynomial model (see for example Chapter 4 of Raktoe, Hedayat and Federer (1981)).

We will use this model from here on. If we perform the experiment using all 8 k treatment

combinations, the resulting vector of observations, Yb,, can be expressed as

(3.1) Y= = X'3, + C',

where X. is the design matrix and 3, is the vector of general mean, main effects and

interactions. The entries in fl, following the common notation, are

0142 ... 41, ij E {0,1,...,s-1}.

We will now present an easy way to find the entries of X. under the orthogonal polynomial

model. This model is especially useful if we are only interested in a fraction of the minimal

complete factorial design. Let x0 ,Zl,..., z,- be the actual levels of the first factor. Form

the following matrix

X, X 2 ... Xo'I

X._1 . "'_ °_...
Orthogonalize the columns of X, from left to right and call the resulting matrix M 1 .

Similarly obtain M 2,... , Mk-I corresponding to the other k - 1 factors. Denote the entry

in the ith row and j,' column of MI by , 0 < u s-1,1< <k. Then the

entry in X. corresponding to the treatment combination (Xi,, z,2 ... , xiA) and parameter

, 42 .. ,k is given by

4



(3.2) n1) ' n(2) (k)

If the s levels of the factors are equally spaced, the orthogonalized matrices M can be

obtained from the available literature. Table 4.1 in Raktoe, Hedayat and Federer (1981)

lists such matrices for 2 < s < 7, which is sufficient for most practical purposes. The same

table can be used for s = 8 or 9 if a polynomial model of degree less than or equal to 5 is

fitted for each factor. We demonstrate some of the above ideas in the following example.

Example 3.1. Let s = 3, k = 2. Under equally spaced levels, coded by 0, 1, 2, we have

0 0 0 1 1 1 2 2 2
P= 0 1 2 0 1 2 0 1 2

0 1 2

MI=M2= 1 1 0 -2

2 1 1 1)

12 1 20 2 1 0 2 1 2 1 2 2 O 2 1 22

Thus for example, the entry in X. corresponding to treatement combination (1, 2) and

parameter 020 is, from (3.2) equal to

(1) (2) -2

hI2 n2 ) = (-2) (1) = -2.

Completing the example we obtain

YOO' 1 -1 1 -1 1 -11-1 1-
Yo i 1 0-2-1 0 2 1 0-2

YO 2 1 1 1-1-I-1 1 1 1
YIo0 1-1 1 0 0 0-2 2-2

Y [ = 1 0 -2 0 0 0 -2 0 4 3p + p.
YI2[ 1 1 1 0 0 0 -2 -2 -2

Y2o 0 1-1 1 1- 1 11-1 1

Y21 1 0-2 1 0-2 1 0-2
L Y22J 1 1 1 1 1 1 1 1 1

5



4. NEW PROPERTIES OF ORTHOGONAL ARRAYS

It is often impractical or impossible due to other restrictions (money, time, etc.) to

use all possible treatment combinations in an experiment. Clearly we would like to select

a fraction of the 8 k treatment combinations, where we will allow that some of the selected

combinations are used more than once in the experiment. If A is an OA(N,k,s,t) based on

S = {0, 1,...,s - 1}, then the columns of A form such a fraction of the minimal complete

factorial.

Under the orthogonal polynomial model (3.1), possibly neglecting some of the param-

eters in P, we can write

(4.1) YA = XAPA + CA-

Here #A is the vector of parameters obtained from #3, by deleting those parameters that

can be neglected, while XA is the design matrix obtained as in (3.2), but now only using

the treatment combinations in A and the vector of parameters 3A.

Example 4.1. Let A be the following OA(8,4,2,3):

0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1

Let #A consists of the general mean, the main effects and the two factor interactions

between factors 1 and 2, 1 and 3, and 1 and 4. In our notation this means

A 0 0 0,00, 00.00 0 . 0 .0 0-0-0 0 0
GA= (¢¢2 4 i'2'34'4, -i4'24-3 4, el~~,

#A -2 01020 , 4- 12 34, W 12 € 4 ., 3 4 1 W23 4)

Since~~~~~~ M3 4 2=M =[ 1

Since M M2 M 3  M4] we obtain by (3.2):

6
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Yo 1  1 -1 1 1 1 -1 -1 -1
Y1o1 1 1 -1 1 1 -1 1 1
Y1101 1 1 1 -1 1 1 -1 1
Y111o 1 1 1 1 - 1 1 -1 AY~ooo 1 1 -1 -1 -1 -1 -1 -1 A S

Yoloo 1 -I 1 -1 -1 -1 1 1

-Yoooi 1 -1 -1 -1 1 1 1 -1

It is interesting to observe that in the above example X5AXA = 81, implying that

the general mean, the main effects and the 3 two factor interactions can be estimated

orthogonally, assuming that other parameters can be neglected. This property is not based

-# on coincidence. We will soon see a result that explains this property. In the meantine the

~reader is invited to verify that the same property holds if we replace the interaction between

factors 1 and 4 in !3A by the interaction between factors 2 and 3.

* We will proceed by giving some of the statistical properties of orthogonal arrays

as fractional factorial designs under the orthogonal polynomial model, but for a concise

formulation wve need one more concept. If r is even, then a fractional factorial design is said

to be of resolution r if all factorial effects involving (r -2) /2 or fewer factors are estimable,

* assuming that all factorial effects involving (r + 2)/2 or more factors can be neglected. If r

is odd, the design is said to be of resolution • if all effects involving (r - 1) /2 or fewer factors

are estimable, assuming that the remaining effects can be neglected. The usual convention

about the general mean is that for odd r it is among the parameters to be estimated, while

for even T it is not among those to be estimated, nor among those that canl be neglected.

So for example a resolution III design is one for which the general mean and main effects

can be estimated, assuming that all other effects can be neglcted. A resolution IV design

allows us to estimate all main effects under the presence of the general mean and all two

factor interactions, while all other effects are neglected.

The main reason that orthogonal arrays ae interesting in the above described statis-

tical context is due to the following well known result.

THEOREM 4.1I. An orthogonal array of strength t is a design of resolution t+ 1. Moreover

the concerned effects are orthogonally estimable, while the general mean can always be

included in the effects to be estimated, both for even and odd t.

7



A proof of this result can, for example, be found in Raktoe, Hedayat and Federer

(1981) (Theorem 13.1). This is a very nice and powerful result. It tells us for example

that in an OA(8,4,2,3) the general mean and main effects can be estimated orthogonally,

assuming that three and four factor interactions are absent. However a property as in

Example 3.2 cannot be explained by this result.

For this purpose we formulate here a more general result. Let x be a k-dimensional

(0,1)-vector, i.e., x' = (xiZ 2,. .. ,Xk) with xi E {0, 1}. With factorial effects corre-

sponding to x we will mean those effects 4' ... 40 for which ij = 0 if and only if

xj = 0,1 < j < k.

Now assume that B and C are two disjoint sets of k-dimensional (0, 1)-vectors (C may

be the empty set) such that

1. If x,Y E B, then I{i E {1...,k} : z 1 or y, = 11} < t.

2. If x E B,y E C, then 1{i E {1,...,k}:x = or yi=1}j t.

Then we have the following theorem.

THEOREM 4.2. If A is an orthogonal array of strength t, all effects corresponding to

vectors in B can be estimated orthogonally assuming that effects corresponding to vectors

in C are the only other ones that are not neglected. The zero vector, corresponding to the

general mean, can always be chosen in B.

It is easy to see that this is a generalization of Theorem 4.1. Moreover if we choose B -

{(0, 0, 0,0)', (1,0, 0,0)', (0, 1, 0,0)', (0, 0, 1, 0)', (0, 00, 1)', (1, 1,0, 0)', (1,0, 1,0)', (1,0,0, 1)'}

and C = 40 we obtain an explanation for Example 3.2.

More information on the structure of the orthogonal array A can even lead to more

general conclusions. Instead of a general formulation we just illustrate this by an example.

Example 4.3. Let A be the following orthogonal array

Factor
1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1
3 0 1 0 1 0 1 0 1
4 0 1 0 1 1 0 1 0
5 0 1 1 0 1 0 0 1

8



This is an OA(8,5,2,2). We claim that the following 8 effects can be estimated orthogonally,

assuming that no other effects are present: the general mean, the main effects, and the two

factor interactions between the factors 1 and 2 and 1 and 5. We can not conclude this from

V our previous result; indeed we do not claim that our statement is valid for any OA (8,5,2,2),

only for this particular one. An explanation for the vailidity of our statement Is as follows:

select any two effects to be estimated and look at the rows in A corresponding to the factors

that are involved. These rows form each time one or more copies of a minimal complete

factorial. For example, if we select the main effect of 2 and the interaction between I

and 5, we see that the rows corresponding to the factors 1, 2 and 5 form one copy of a

minimal complete factorial. Similar for other effects. Due to this prope-ty the validity of

our statements follows. We call orthogonal arrays with such additional features as flexible

orthogonal arrayjs. The study of the existence and construction of flexible orthogonal arrays

is currently under investigation.

Closing Remarks. Our Theorem 4.2 and the notion of flexible orthogonal arrays are

useful in preparing and efficiently cataloging line graphs associated with orthogonal arrays.

The usefulness of such graphs for practical applications of orthogonal arrays is nicely

demonstrated by Taguchi and Wu (1979).

EMU

MR



REFERENCES

HEDAYAT, A. AND STUFKEN, J., (1986). Orthogonal Arrays and Their Statistical

Applications. (A monograph to be published.)

RAKTOE, B.L., HEDAYAT, A. AND FEDERER, W.T., (1981). Factorial Designs.

John Wiley and Sons, New York.

RAO, C.R., (1946). Hypercubes of strength d leading to confounded designs in

factorial experiments. Bull. Caic. Math. Soc., 38, 67-78.

RAO, C. R., (1947). Factorial experiments derivable from combinatorial arrange-

ments of arrays. J. Roy. Statist. Soc., 9, 128-139.

RAO, C.R., (1949). On a class of arrangements. Proc. Edinburgh Math. Soc., 8,

119-125.

TAGUCHI, G. AND WU, Y., (1979). Introduction to Off-Line Quality Control.

Central Japan Quality Control Association.

10



r7

T/


